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Summary 

Precipitated n-butylpotassium (BuK), prepared by metal-metal exchange 
between n-butyllithium and potassium-t-amylate, dissolves in hexane after ad- 
dition of N,N,N’,N’-tetramethylethylenediamine (TMEDA). The homogeneous 
solution is an effective metallation reagent. High-field NMR studies in THF-ds 
solution at low temperatures, considered alongside analogous data for alkyl- 
sodium derivatives, indicate that like the latter, BuK is monomeric under these 
conditions. 

We have extended our study of the preparation and the properties of n- 
butylsodium (BuNa) [l] to n-butylpotassium (BuK). Earlier investigations 
indicated that both alkylpotassium and alkylsodium species are insoluble in 
hydrocarbons [Z-6]. In contrast, we achieved homogeneous solutions of BuNa 
in hexane by addition of donor ligands like N,N,N’,iV’-tetramethylethylene- 
diamine (TMEDA). Thus, BuNa now provides an altenative to butyllithium 
(BuLi) or mixed n-BuLi/ROK (“LIKOR’‘-type) reagents [3]. BuK can be 
obtained via similar metal-metal exchange (eq. 1) [4-61 in hexane at -50% 
and with ROK= potassium-t-amylate (or better potassium-(-)-(lR)-men- 
thoxide [6]). We now report our experience with this compound. 

n-BuLi + ROK -+ n-BuK + ROLi (1) 

When prepared via eq. 1, BuK is insoluble in hexane and, like BuNa [l] , can 
be separated and washed easily by filtration in a closed vessel equipped with a 
glass frit. Addition of a donating ligand such as TMEDA to a BuK/hexane 
suspension at -50°C gives a clear solution of high metallating power. Thus 
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toluene is rapidly deprotonated (<l min at -3O”C), yielding red crystals, and 
subsequent treatment with CD,OD reveals the crystal composition to be 
(benzylpotassium - TMEDA - 0.5 toluene), . As TMEDA is attacked faster by 
BuK than by BuNa [ 71, temperatures below ca. -70°C must be maintained 
during storage, even then, a brown precipitate forms after several days. 

The BuK/TMEDA in hexane was also used to metallate benzylic and bi- 
phenyl-substituted carbon atoms in cross-linked polystyrene derivatives, and 
this gave deeply colored polymetallated polymers [8a]. The concentration of 
the polystyrene-bound carbanionic centres can be determined by direct titra- 
tion [Sb] or by microanalysis after quenching with an electrophilic reagent. 

During dissolution of the precipitated BuK in octadeutero-tetrahydrofuran 
(THF-&) at -100°C (for the NMR experiments), partial attack on the solvent 
occurred, to give small amounts of CH3CH2CH2CH2D. However, this reaction 
does not proceed to any further significant extent on warming to -60°C. 
However, at -30°C BuK is completely deuterated by THF-ds. A l/l-mixture 
of both solid BuK and ROK brings about immediate dedeuteration of THF-ds 
when dissolved in it at -100°C; only monodeuterobutane was detected in both 
the ‘H and 13C NMR spectrum at that temperature. 

The reaction of BuK with THF precludes determination of the molecular 
weight by cryoscopy [ 91; such determination was also prevented for BuNa by 
solubility problems at - 108°C [ 11. However, we found cryoscopically that the 
degree of aggregation of n-octylsodium in THF is y1 = 0.9 + 0.1 (formal concen- 
tration c = 50.7 mm), i.e. only a pure monomer is present. By analogy, n-BuNa 
also must be a monomer in THF-solution which accounts for the NMR obser- 
vations [ 11. 

The 400 MHz ‘H NMR spectrum of BuK in THF-ds at -60°C is quite similar 
to that of BuNa [ 11. The chemical shifts and coupling constants are shown in 
Table 1. 

TABLE 1 

‘H NMR CHEMICAL SHIFTS (ppm) OF BUM, M = Li, Na, K IN THF-d, 

(Multiplicities and coupling constants (in Hz) when measurable are given in parentheses) 

H(l) H(2) H(3) C H, Temperature (“C) Literature 

n-BuK -1.17 1.54 1.27 0.82 -60 this work 

(t; 7.9) (tt; 7.9, 7.1) (qt; 7.1, 7.1) (t; 7.1) 

n-BuNa -1.09 1.51 1.17 0.81 -75 [II 
(t; 8.8) (tt; 8.8, 7.3) (qt; 7.3, 7.3) (t; 7.3) 

n-BuLi (tetramer) -1.03 1.38 1.17 0.81 -75 [lObI, [121 
(9.2) /I51 

n-BuLi (dimer) -1.14 1.44 1.18 0.81 -75 [lObI. 1121 
(8.8) Cl51 

As was the case for BuNa, no evidence for the equilibrating dimers and 
tetramers found for n-BuLi [lo] can be detected in the BuK NMR spectra: 
the a-, p-, y- and CH,-protons appear as distinct sets of signals and show no 
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TABLE 2 

‘“C NMR CHEMICAL SHIFTS @pm) OF n-BUM. M = Li, Na. K IN THF-d. 

n-BuK 

n-BuNa 
n-BuU (tetcamer) 
n-BuLi (dimer) 

C(l) 

21.4 

9.8 
10.5 
12.4 

cc-a C(3) CH, Temperature (‘C) 

36.9 39.4 15.0 -91 

35.9 37.5 14.9 -95 
33.9 35.4 14.7 -96 

Literature 

this work 

Ill 
ClOal, Cl11 
ClOal, Cl41 

splitting apart from intramolecular H-H coupling. Table 2 shows the % 
chemical shifts for BuK, BuNa and the n-BuLi tetramer. 

As in the ‘H NMR spectrum the observation of one set of signals indicates the 
presence of only one form of n-BuK, and we take this to be the monomer. 
Whereas in BuNa the chemical shift of the 01 -carbon is slightly upfield as com- 
pared to that of the n-BuLi tetramer, a relatively strong downfield shift is ob- 
served for n-BuK. A small chemical shift difference between BuLi and BuNa 
and the correspondingly large difference between BuNa and BuK also has been 
described for the 5,5-dimethyl-2-hexenyl-alkali metal derivatives [ 131: (o-C) 
31.0 (Li), 35.7 (Na), 45.0 (K) ppm. The downfield shift of the e-carbon in 
BuK can be attributed to the more pronounced sp2-character of the anionic 
centre due to the larger ionic radius of K’ over those of Na’ and Li’. A Eittle 
covalent character (lo-20%) may contribute to the bonding in BuLi, and in 
BuNa. 

Experimental 
NMR spectra were recorded on a JEOL GX400 spectrometer (‘H: 400 MHz; 

13C: 100.5 MHz). The chemical shifts are relatively to TMS and are based on 
the solvent signals: residual proton in THF-d8 6 3.85 ppm; a-carbon in THF-& 
6 67.4 ppm. 

BzdW’MEDA . To 78.0 ml of a potassium-t-amylate solution in hexane (ob- 
tained from refluxing 0.15 mol t-amyl alcohol and 0.15 mol potassium in 
hexane), 120.0 ml (0.20 mol) of n-BuLi in hexane (1.6 m) was added dropwise 
with stirring at -50°C (dry-ice cooled filtration vessel with glass frit in an argon 
counter current [9] . BuK separated as a white powder. After 2 h at -50°C 
the mixture was stirred for 30 min at 0°C and then filtered. The powdery BuK 
was washed thoroughly with cooled hexane and suspended in 120 ml of hexane 
at -50°C. Addition of 70 ml (0.47 mol) TMEDA yielded a clear solution, which 
was used directly for metallation reactions. The temperature must be kept 
below ca. -40°C to prevent metallation of.TMEDA. THF or THF-da can also be 
used to dissolve the BuK precipitate (see text), but the temperature must be 
kept below -90°C. 
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